Search results for "eigenvalue problem"

showing 10 items of 11 documents

On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid : a study into paper production …

2011

elastic stabilitymallintaminenpaperirainapaper makingmekaniikkaaxially movingpaperinvalmistusfluid-structure interactionmassa- ja paperiteollisuuslaskennallinen mekaniikkamenetelmätpotential flowpapermaking machineryFSIpaper webeigenvalue problemvalmistuspaneldynamiikkapaperikoneet
researchProduct

Using affinity perturbations to detect web traffic anomalies

2013

The initial training phase of machine learning algorithms is usually computationally expensive as it involves the processing of huge matrices. Evolving datasets are challenging from this point of view because changing behavior requires updating the training. We propose a method for updating the training profile efficiently and a sliding window algorithm for online processing of the data in smaller fractions. This assumes the data is modeled by a kernel method that includes spectral decomposition. We demonstrate the algorithm with a web server request log where an actual intrusion attack is known to happen. Updating the kernel dynamically using a sliding window technique, prevents the proble…

diffuusiokarttaulottuvuuden pienennysweb trafficverkkoliikenneeigenvalue problemdiffusion mapsominaisarvo-ongelmaperturbaatioteoriaanomaly detectionpoikkeavuuden havaitseminenperturbation theorydimensionality reduction
researchProduct

On the Fučík spectrum of the p-Laplacian with no-flux boundary condition

2023

In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad && \text{in } \Omega,\\ u & = \text{constant} &&\text{on } \partial\Omega,\\ 0&=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&& \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out…

Computational MathematicsApplied MathematicsGeneral EngineeringGeneral MedicineEigenvalue problem first nontrivial curve Fucik spectrum no-flux boundary condition p-Laplace differential operatorGeneral Economics Econometrics and FinanceAnalysis
researchProduct

Periodic solutions for a class of second-order Hamiltonian systems

2005

Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence result of two distinct periodic solutions is given.© 2005 Texas State University - San Marcos.

Second order Hamiltonian systemPeriodic solutioncritical pointslcsh:MathematicsMultiple solutioneigenvalue problemperiodic solutionslcsh:QA1-939Second order Hamiltonian systemsAnalysisCritical pointmultiple solutions.Electronic Journal of Differential Equations
researchProduct

Inverse eigenvalue problem for normal J-hamiltonian matrices

2015

[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.

Hamiltonian matrixApplied MathematicsHamiltonian matrixMoore–Penrose inverseMatrius (Matemàtica)Normal matrixSquare matrixHermitian matrixCombinatoricssymbols.namesakeMatrix (mathematics)Inverse eigenvalue problemsymbolsÀlgebra linealDivide-and-conquer eigenvalue algorithmMATEMATICA APLICADAHamiltonian (quantum mechanics)Normal matrixEigenvalues and eigenvectorsMathematicsMathematical physicsApplied Mathematics Letters
researchProduct

A symmetrization result for Monge–Ampère type equations

2007

In this paper we prove some comparison results for Monge–Ampere type equations in dimension two. We also consider the case of eigenfunctions and we derive a kind of “reverse” inequalities. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Mathematics::Complex VariablesGeneral MathematicsMathematical analysisComparison resultsMonge-Ampère equationEigenfunctionType (model theory)Monge-Ampère equationsDimension (vector space)Settore MAT/05 - Analisi Matematicaeigenvalue problemrearrangementsSymmetrizationAmpereEigenvalue problemsMathematicsMathematische Nachrichten
researchProduct

Exact constants in Poincaré type inequalities for functions with zero mean boundary traces

2014

In this paper, we investigate Poincare type inequalities for the functions having zero mean value on the whole boundary of a Lipschitz domain or on a measurable part of the boundary. We find exact and easily computable constants in these inequalities for some basic domains (rectangles, cubes, and right triangles) and discuss applications of the inequalities to quantitative analysis of partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.

Zero meanPartial differential equationeigenvalue problemsGeneral MathematicsMathematical analysista111General EngineeringBoundary (topology)Value (computer science)Type (model theory)Physics::History of PhysicsPoincare type inequalitiessymbols.namesakeLipschitz domainerror estimatesPoincaré conjecturesymbolsfunctional inequalitiesMathematicsMathematical Methods in the Applied Sciences
researchProduct

Critical points for nondifferentiable functions in presence of splitting

2006

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

Mathematics::Functional AnalysisPure mathematicsnon-smooth functionNonsmooth functionssplittingApplied MathematicsMathematical analysisMultiple solutionsMultiple solutionMathematics::Analysis of PDEsRegular polygoncritical point; non-smooth function; splittingcritical pointMultiplicity (mathematics)Critical pointsNonsmooth functionElliptic variational-hemivariational eigenvalue problemLipschitz continuityCritical point (mathematics)Elliptic variational–hemivariational eigenvalue problemsSplittingsEigenvalues and eigenvectorsAnalysisMathematics
researchProduct

A simple tool to forecast the natural frequencies of thin-walled cylinders

2023

Abstract. This paper presents an approximate method to predict the natural frequencies of thin-walled cylinders. By taking inspiration from a previous work of one of the authors, the starting point of the proposed approach is a proper construction of reasonable eigenfunctions. However, a new simple tool based on the principle of virtual work has been developed to estimate the natural frequencies and the amplitude of vibration without complex numerical resolution. Moreover, the applicability of the model is extended to all the most common constraint conditions. The identification of the natural frequencies of a continuous cylinder is reduced to an eigenvalue problem based on a matrix whose e…

Circular Cylindrical ShellNatural FrequenciesSettore ING-IND/13 - Meccanica Applicata Alle MacchineEigenvalue ProblemTheoretical and Applied Mechanics - AIMETA 2022
researchProduct

Some remarks on nonlinear elliptic problems involving Hardy potentials

2007

In this note we prove an Hardy type inequality with a remainder term, where the potential depends only on a group of variables. Such a result allows us to show the existence of entropy solutions to a class of elliptic P.D.E.'s.

hardy type inequalitySettore MAT/05 - Analisi Matematicanonlinear eigenvalue problemHardy type inequalitieentropy solutions
researchProduct